LogoAIAny
  • Search
  • Collection
  • Category
  • Tag
  • Blog
LogoAIAny

Tag

Explore by tags

LogoAIAny

Curated AI Resources for Everyone

support@aiany.app
Product
  • Search
  • Collection
  • Category
  • Tag
Resources
  • Blog
Company
  • Privacy Policy
  • Terms of Service
  • Sitemap
Copyright © 2026 All Rights Reserved.
  • All

  • 30u30

  • ASR

  • ChatGPT

  • GNN

  • IDE

  • RAG

  • ai-agent

  • ai-api

  • ai-api-management

  • ai-client

  • ai-coding

  • ai-demos

  • ai-development

  • ai-framework

  • ai-image

  • ai-image-demos

  • ai-inference

  • ai-leaderboard

  • ai-library

  • ai-rank

  • ai-serving

  • ai-tools

  • ai-train

  • ai-video

  • ai-workflow

  • AIGC

  • alibaba

  • amazon

  • anthropic

  • audio

  • blog

  • book

  • bytedance

  • chatbot

  • chemistry

  • claude

  • claude-code

  • course

  • deepmind

  • deepseek

  • engineering

  • finance

  • foundation

  • foundation-model

  • gemini

  • github

  • google

  • gradient-booting

  • grok

  • huggingface

  • LLM

  • llm

  • math

  • mcp

  • mcp-client

  • mcp-server

  • meta-ai

  • microsoft

  • mlops

  • NLP

  • nvidia

  • ocr

  • ollama

  • openai

  • paper

  • physics

  • plugin

  • pytorch

  • RL

  • robotics

  • science

  • security

  • sora

  • translation

  • tutorial

  • vibe-coding

  • video

  • vision

  • xAI

  • xai

Icon for item

PennyLane

2018
PennyLaneAI (Xanadu)

PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. It enables building quantum circuits and hybrid quantum-classical models, provides hardware and simulator backends via plugins, and integrates with major ML frameworks for automatic differentiation and training.

ai-libraryai-frameworkgithubpytorchchemistry+1
Icon for item

Boltz

2024
Saro Passaro, Gabriele Corso +10

Boltz is an open-source family of deep learning models and a GitHub project for biomolecular interaction prediction (Boltz-1, Boltz-2). It predicts complex structures and binding affinities, aiming to approach or exceed AlphaFold3 structural accuracy and deliver fast, practical affinity predictions comparable to physics-based methods at a fraction of the compute cost. Code and weights are released under the MIT license.

foundation-modelgithubscienceai-trainai-inference+1

Neural Message Passing for Quantum Chemistry

2017
Justin Gilmer, Samuel S. Schoenholz +3

This paper introduces Message Passing Neural Networks (MPNNs), a unifying framework for graph-based deep learning, and applies it to quantum-chemistry property prediction, achieving state-of-the-art accuracy on the QM9 benchmark and approaching chemical accuracy on most targets. Its impact includes popularising graph neural networks, influencing subsequent work in cheminformatics, materials discovery, and the broader machine-learning community by demonstrating how learned message passing can replace hand-engineered molecular descriptors.

foundation30u30papersciencechemistry
  • Previous
  • 1
  • Next